Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
N Engl J Med ; 387(12): 1089-1098, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-2036975

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of hospitalization for heart failure and cardiovascular death among patients with chronic heart failure and a left ventricular ejection fraction of 40% or less. Whether SGLT2 inhibitors are effective in patients with a higher left ventricular ejection fraction remains less certain. METHODS: We randomly assigned 6263 patients with heart failure and a left ventricular ejection fraction of more than 40% to receive dapagliflozin (at a dose of 10 mg once daily) or matching placebo, in addition to usual therapy. The primary outcome was a composite of worsening heart failure (which was defined as either an unplanned hospitalization for heart failure or an urgent visit for heart failure) or cardiovascular death, as assessed in a time-to-event analysis. RESULTS: Over a median of 2.3 years, the primary outcome occurred in 512 of 3131 patients (16.4%) in the dapagliflozin group and in 610 of 3132 patients (19.5%) in the placebo group (hazard ratio, 0.82; 95% confidence interval [CI], 0.73 to 0.92; P<0.001). Worsening heart failure occurred in 368 patients (11.8%) in the dapagliflozin group and in 455 patients (14.5%) in the placebo group (hazard ratio, 0.79; 95% CI, 0.69 to 0.91); cardiovascular death occurred in 231 patients (7.4%) and 261 patients (8.3%), respectively (hazard ratio, 0.88; 95% CI, 0.74 to 1.05). Total events and symptom burden were lower in the dapagliflozin group than in the placebo group. Results were similar among patients with a left ventricular ejection fraction of 60% or more and those with a left ventricular ejection fraction of less than 60%, and results were similar in prespecified subgroups, including patients with or without diabetes. The incidence of adverse events was similar in the two groups. CONCLUSIONS: Dapagliflozin reduced the combined risk of worsening heart failure or cardiovascular death among patients with heart failure and a mildly reduced or preserved ejection fraction. (Funded by AstraZeneca; DELIVER ClinicalTrials.gov number, NCT03619213.).


Subject(s)
Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Stroke Volume , Ventricular Function, Left , Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucosides/adverse effects , Glucosides/therapeutic use , Heart Failure/complications , Heart Failure/drug therapy , Heart Failure/mortality , Heart Failure/physiopathology , Humans , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Stroke Volume/drug effects , Ventricular Function, Left/drug effects
2.
Electronics ; 11(18):2893, 2022.
Article in English | MDPI | ID: covidwho-2032888

ABSTRACT

Diagnosing COVID-19 infection through the classification of chest images using machine learning techniques faces many controversial problems owing to the intrinsic nature of medical image data and classification architectures. The detection of lesions caused by COVID-19 in the human lung with properties such as location, size, and distribution is more practical and meaningful to medical workers for severity assessment, progress monitoring, and treatment, thus improving patients' recovery. We proposed a COVID-19-associated lung lesion detector based on an object detection architecture. It correctly learns disease-relevant features by focusing on lung lesion annotation data of medical images. An annotated COVID-19 image dataset is currently nonexistent. We designed our semi-self-supervised method, which can extract knowledge from available annotated pneumonia image data and guide a novice in annotating lesions on COVID-19 images in the absence of a medical specialist. We prepared a sufficient dataset with nearly 8000 lung lesion annotations to train our deep learning model. We comprehensively evaluated our model on a test dataset with nearly 1500 annotations. The results demonstrated that the COVID-19 images annotated by our method significantly enhanced the model's accuracy by as much as 1.68 times, and our model competes with commercialized solutions. Finally, all experimental data from multiple sources with different annotation data formats are standardized into a unified COCO format and publicly available to the research community to accelerate research on the detection of COVID-19 using deep learning.

3.
Anesth Analg ; 132(5): 1191-1198, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1190137

ABSTRACT

BACKGROUND: Use of anesthesia machines as improvised intensive care unit (ICU) ventilators may occur in locations where waste anesthesia gas suction (WAGS) is unavailable. Anecdotal reports suggest as much as 18 cm H2O positive end-expiratory pressure (PEEP) being inadvertently applied under these circumstances, accompanied by inaccurate pressure readings by the anesthesia machine. We hypothesized that resistance within closed anesthesia gas scavenging systems (AGSS) disconnected from WAGS may inadvertently increase circuit pressures. METHODS: An anesthesia machine was connected to an anesthesia breathing circuit, a reference manometer, and a standard bag reservoir to simulate a lung. Ventilation was initiated as follows: volume control, tidal volume (TV) 500 mL, respiratory rate 12, ratio of inspiration to expiration times (I:E) 1:1.9, fraction of inspired oxygen (Fio2) 1.0, fresh gas flow (FGF) rate 2.0 liters per minute (LPM), and PEEP 0 cm H2O. After engaging the ventilator, PEEP and peak inspiratory pressure (PIP) were measured by the reference manometer and the anesthesia machine display simultaneously. The process was repeated using prescribed PEEP levels of 5, 10, 15, and 20 cm H2O. Measurements were repeated with the WAGS disconnected and then were performed again at FGF of 4, 6, 8, 10, and 15 LPM. This process was completed on 3 anesthesia machines: Dräger Perseus A500, Dräger Apollo, and the GE Avance CS2. Simple linear regression was used to assess differences. RESULTS: Utilizing nonparametric Bland-Altman analysis, the reference and machine manometer measurements of PIP demonstrated median differences of -0.40 cm H2O (95% limits of agreement [LOA], -1.00 to 0.55) for the Dräger Apollo, -0.40 cm H2O (95% LOA, -1.10 to 0.41) for the Dräger Perseus, and 1.70 cm H2O (95% LOA, 0.80-3.00) for the GE Avance CS2. At FGF 2 LPM and PEEP 0 cm H2O with the WAGS disconnected, the Dräger Apollo had a difference in PEEP of 0.02 cm H2O (95% confidence interval [CI], -0.04 to 0.08; P = .53); the Dräger Perseus A500, <0.0001 cm H2O (95% CI, -0.11 to 0.11; P = 1.00); and the GE Avance CS2, 8.62 cm H2O (95% CI, 8.55-8.69; P < .0001). After removing the hose connected to the AGSS and the visual indicator bag on the GE Avance CS2, the PEEP difference was 0.12 cm H2O (95% CI, 0.059-0.181; P = .0002). CONCLUSIONS: Displayed airway pressure measurements are clinically accurate in the setting of disconnected WAGS. The Dräger Perseus A500 and Apollo with open scavenging systems do not deliver inadvertent continuous positive airway pressure (CPAP) with WAGS disconnected, but the GE Avance CS2 with a closed AGSS does. This increase in airway pressure can be mitigated by the manufacturer's recommended alterations. Anesthesiologists should be aware of the potential clinically important increases in pressure that may be inadvertently delivered on some anesthesia machines, should the WAGS not be properly connected.


Subject(s)
Anesthesiology/instrumentation , COVID-19/therapy , Intensive Care Units , Positive-Pressure Respiration/instrumentation , Ventilators, Mechanical , Anesthesia/methods , Anesthesiology/methods , COVID-19/diagnosis , COVID-19/epidemiology , Critical Care/methods , Humans , Positive-Pressure Respiration/methods , Respiration, Artificial/instrumentation , Respiration, Artificial/methods
4.
Infect Dis Clin Pract (Baltim Md) ; 29(2): e88-e96, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1174975

ABSTRACT

As New York became the epicenter of the COVID-19 pandemic early on, clinicians were challenged to provide optimal medical and pharmaceutical care, despite the paucity of supporting literature and guidance. We sought to describe prescribing patterns and outcomes of physician response to the urgent need to treat COVID-19 patients before initiation of randomized clinical trials. METHODS: This was a retrospective cohort study of adult patients with COVID-19 initially admitted to acute care services during March 2020. Critically ill patients requiring intensive care unit level of care on admission were excluded. RESULTS: A total of 639 consecutive patients (supportive care, n = 247; treatment n = 392) were included in the analysis. Overall, the 28-day mortality rate was 12.2%. The mortality was 8.7% higher in the treatment group (15.6% vs 6.9% in the supportive care group, P < 0.001). Treatment was not protective against progression to severe disease (18.4% vs 3.6% with supportive care, P < 0.0001). Time to defervescence, duration of oxygen support, and hospital and intensive care unit (ICU) length of stay were also higher in the treatment group. In multivariate analysis, 60 years or older, presence of severe disease, and need for ICU admission were identified as independent predictors of 28-day mortality. There were 41 (10.5%) adverse event in the treatment group, with the majority being QT prolongation and gastrointestinal effects. CONCLUSIONS: In this cohort of hospitalized patients admitted to acute care services, treatment with hydroxychloroquine, lopinavir/ritonavir or both could not be shown to improve mortality, progression to severe disease, or clinical response.

SELECTION OF CITATIONS
SEARCH DETAIL